skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Asi, H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the problem of differentially private stochastic convex optimization (DP-SCO) with heavy-tailed gradients, where we assume a kth-moment bound on the Lipschitz constants of sample functions rather than a uniform bound. We propose a new reduction-based approach that enables us to obtain the first optimal rates (up to logarithmic factors) in the heavy-tailed setting, achieving error G2⋅1n√+Gk⋅(d√nϵ)1−1k under (ϵ,δ)-approximate differential privacy, up to a mild $$\textup{polylog}(\frac{1}{\delta})$$ factor, where G22 and Gkk are the 2nd and kth moment bounds on sample Lipschitz constants, nearly-matching a lower bound of [Lowy and Razaviyayn 2023]. We further give a suite of private algorithms in the heavy-tailed setting which improve upon our basic result under additional assumptions, including an optimal algorithm under a known-Lipschitz constant assumption, a near-linear time algorithm for smooth functions, and an optimal linear time algorithm for smooth generalized linear models. 
    more » « less